Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis.

Identifieur interne : 000455 ( Main/Exploration ); précédent : 000454; suivant : 000456

Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis.

Auteurs : Elke Ströher ; Julia Grassl ; Chris Carrie ; Ricarda Fenske ; James Whelan ; A Harvey Millar [Australie]

Source :

RBID : pubmed:26672074

Descripteurs français

English descriptors

Abstract

Glutaredoxins (Grxs) are small proteins that function as oxidoreductases with roles in deglutathionylation of proteins, reduction of antioxidants, and assembly of iron-sulfur (Fe-S) cluster-containing enzymes. Which of the 33 Grxs in Arabidopsis (Arabidopsis thaliana) perform roles in Fe-S assembly in mitochondria is unknown. We have examined in detail the function of the monothiol GrxS15 in plants. Our results show its exclusive mitochondrial localization, and we are concluding it is the major or only Grx in this subcellular location. Recombinant GrxS15 has a very low deglutathionylation and dehydroascorbate reductase activity, but it binds a Fe-S cluster. Partially removing GrxS15 from mitochondria slowed whole plant growth and respiration. Native GrxS15 is shown to be especially important for lipoic acid-dependent enzymes in mitochondria, highlighting a putative role in the transfer of Fe-S clusters in this process. The enhanced effect of the toxin arsenic on the growth of GrxS15 knockdown plants compared to wild type highlights the role of mitochondrial glutaredoxin Fe-S-binding in whole plant growth and toxin tolerance.

DOI: 10.1104/pp.15.01308
PubMed: 26672074
PubMed Central: PMC4775112


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis.</title>
<author>
<name sortKey="Stroher, Elke" sort="Stroher, Elke" uniqKey="Stroher E" first="Elke" last="Ströher">Elke Ströher</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Grassl, Julia" sort="Grassl, Julia" uniqKey="Grassl J" first="Julia" last="Grassl">Julia Grassl</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Carrie, Chris" sort="Carrie, Chris" uniqKey="Carrie C" first="Chris" last="Carrie">Chris Carrie</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fenske, Ricarda" sort="Fenske, Ricarda" uniqKey="Fenske R" first="Ricarda" last="Fenske">Ricarda Fenske</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Whelan, James" sort="Whelan, James" uniqKey="Whelan J" first="James" last="Whelan">James Whelan</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Millar, A Harvey" sort="Millar, A Harvey" uniqKey="Millar A" first="A Harvey" last="Millar">A Harvey Millar</name>
<affiliation wicri:level="1">
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.) harvey.millar@uwa.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26672074</idno>
<idno type="pmid">26672074</idno>
<idno type="doi">10.1104/pp.15.01308</idno>
<idno type="pmc">PMC4775112</idno>
<idno type="wicri:Area/Main/Corpus">000478</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000478</idno>
<idno type="wicri:Area/Main/Curation">000478</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000478</idno>
<idno type="wicri:Area/Main/Exploration">000478</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis.</title>
<author>
<name sortKey="Stroher, Elke" sort="Stroher, Elke" uniqKey="Stroher E" first="Elke" last="Ströher">Elke Ströher</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Grassl, Julia" sort="Grassl, Julia" uniqKey="Grassl J" first="Julia" last="Grassl">Julia Grassl</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Carrie, Chris" sort="Carrie, Chris" uniqKey="Carrie C" first="Chris" last="Carrie">Chris Carrie</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fenske, Ricarda" sort="Fenske, Ricarda" uniqKey="Fenske R" first="Ricarda" last="Fenske">Ricarda Fenske</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Whelan, James" sort="Whelan, James" uniqKey="Whelan J" first="James" last="Whelan">James Whelan</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</nlm:affiliation>
<wicri:noCountry code="subField">Australia (J.W.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Millar, A Harvey" sort="Millar, A Harvey" uniqKey="Millar A" first="A Harvey" last="Millar">A Harvey Millar</name>
<affiliation wicri:level="1">
<nlm:affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.) harvey.millar@uwa.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (drug effects)</term>
<term>Arabidopsis (growth & development)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Arsenic (toxicity)</term>
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Proteome (genetics)</term>
<term>Proteome (metabolism)</term>
<term>Thioctic Acid (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide lipoïque (métabolisme)</term>
<term>Arabidopsis (croissance et développement)</term>
<term>Arabidopsis (effets des médicaments et des substances chimiques)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Arsenic (toxicité)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Protéome (génétique)</term>
<term>Protéome (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Glutaredoxins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arabidopsis</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines mitochondriales</term>
<term>Protéome</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Glutaredoxins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondria</term>
<term>Mitochondrial Proteins</term>
<term>Plant Roots</term>
<term>Proteome</term>
<term>Thioctic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide lipoïque</term>
<term>Arabidopsis</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Mitochondries</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines mitochondriales</term>
<term>Protéome</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Arsenic</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Arsenic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Knockdown Techniques</term>
<term>Genes, Plant</term>
<term>Mutation</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Mutation</term>
<term>Techniques de knock-down de gènes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins (Grxs) are small proteins that function as oxidoreductases with roles in deglutathionylation of proteins, reduction of antioxidants, and assembly of iron-sulfur (Fe-S) cluster-containing enzymes. Which of the 33 Grxs in Arabidopsis (Arabidopsis thaliana) perform roles in Fe-S assembly in mitochondria is unknown. We have examined in detail the function of the monothiol GrxS15 in plants. Our results show its exclusive mitochondrial localization, and we are concluding it is the major or only Grx in this subcellular location. Recombinant GrxS15 has a very low deglutathionylation and dehydroascorbate reductase activity, but it binds a Fe-S cluster. Partially removing GrxS15 from mitochondria slowed whole plant growth and respiration. Native GrxS15 is shown to be especially important for lipoic acid-dependent enzymes in mitochondria, highlighting a putative role in the transfer of Fe-S clusters in this process. The enhanced effect of the toxin arsenic on the growth of GrxS15 knockdown plants compared to wild type highlights the role of mitochondrial glutaredoxin Fe-S-binding in whole plant growth and toxin tolerance. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26672074</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>170</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>1284-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.15.01308</ELocationID>
<Abstract>
<AbstractText>Glutaredoxins (Grxs) are small proteins that function as oxidoreductases with roles in deglutathionylation of proteins, reduction of antioxidants, and assembly of iron-sulfur (Fe-S) cluster-containing enzymes. Which of the 33 Grxs in Arabidopsis (Arabidopsis thaliana) perform roles in Fe-S assembly in mitochondria is unknown. We have examined in detail the function of the monothiol GrxS15 in plants. Our results show its exclusive mitochondrial localization, and we are concluding it is the major or only Grx in this subcellular location. Recombinant GrxS15 has a very low deglutathionylation and dehydroascorbate reductase activity, but it binds a Fe-S cluster. Partially removing GrxS15 from mitochondria slowed whole plant growth and respiration. Native GrxS15 is shown to be especially important for lipoic acid-dependent enzymes in mitochondria, highlighting a putative role in the transfer of Fe-S clusters in this process. The enhanced effect of the toxin arsenic on the growth of GrxS15 knockdown plants compared to wild type highlights the role of mitochondrial glutaredoxin Fe-S-binding in whole plant growth and toxin tolerance. </AbstractText>
<CopyrightInformation>© 2016 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ströher</LastName>
<ForeName>Elke</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1879-9012</Identifier>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grassl</LastName>
<ForeName>Julia</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8653-4983</Identifier>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carrie</LastName>
<ForeName>Chris</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4240-4674</Identifier>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fenske</LastName>
<ForeName>Ricarda</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0906-8525</Identifier>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whelan</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5754-025X</Identifier>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Millar</LastName>
<ForeName>A Harvey</ForeName>
<Initials>AH</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9679-1473</Identifier>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.) harvey.millar@uwa.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>73Y7P0K73Y</RegistryNumber>
<NameOfSubstance UI="D008063">Thioctic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008063" MajorTopicYN="N">Thioctic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26672074</ArticleId>
<ArticleId IdType="pii">pp.15.01308</ArticleId>
<ArticleId IdType="doi">10.1104/pp.15.01308</ArticleId>
<ArticleId IdType="pmc">PMC4775112</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Aug;144(4):1777-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Feb;134(2):838-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Jul;7(7):1297-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18385124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Feb;10(3):506-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20029842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Feb 27;537(1-3):96-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Jan 27;253(4):448-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9037104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Sep 15;446(3):333-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1946;40(4):516-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16748047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):583-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17727614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2013 Sep;12(9):2381-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23756428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):611-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Apr 24;517(1-3):110-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1988;158:357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3374387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Feb;73(3):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Jan;7(1):187-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Aug 1;13(3):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 Nov;9(11):1071-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11709171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Apr;185-186:86-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Nov;7(22):4158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1643-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25699589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 14;275(28):21149-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):1793-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21984726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Nov;160(3):1187-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22968828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):391-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):42663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):893-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2037-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):1610-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2012 Jun 06;3:182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Nov 2;318(5851):801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17975066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Nov;118(3):935-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Jan;274(1):212-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(4):674-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Apr;6(4):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11286922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Apr;16(4):218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21257336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 May;147(1):101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18337490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jan 18;33(2):403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8286370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Model Mech. 2012 Mar;5(2):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22382365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Mar 19;582(6):848-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(3):e28564</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24714563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1062:551-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24057386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):596-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 16;320(5878):938-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 May 1;371(Pt 3):823-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2005 Nov 16;1(1):11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16287510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1072:453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24136540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):88-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):1037-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22923678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Oct;157(2):587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Jul 19;368(1622):20120259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):46869-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12954611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):797-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20197505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):360-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21767278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(4):e1994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18431481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Jun;9(6):1063-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20061580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jun;54(6):875-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23444301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Dec 12;39(49):15166-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2012 Nov 2;11(11):5443-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23025280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:125-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24498975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Jun 3;584(11):2242-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Mar;57(6):1128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Nov;160(3):1149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22942389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 May 27;111(21):7606-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2014 Feb;137(Pt 2):366-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24334290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Organomet Chem. 2009 Mar 15;694(6):973-980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20161290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1514-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20089767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EcoSal Plus. 2014 May;6(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1544-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Oct 7;89(4):486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 May;11(9):1720-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21472856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2009 Jul 31;1:265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20333196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 1;280(13):12168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2010 Oct;37(10):667-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 7;283(10):6095-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2013 Jan 4;12(1):491-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23198870</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Carrie, Chris" sort="Carrie, Chris" uniqKey="Carrie C" first="Chris" last="Carrie">Chris Carrie</name>
<name sortKey="Fenske, Ricarda" sort="Fenske, Ricarda" uniqKey="Fenske R" first="Ricarda" last="Fenske">Ricarda Fenske</name>
<name sortKey="Grassl, Julia" sort="Grassl, Julia" uniqKey="Grassl J" first="Julia" last="Grassl">Julia Grassl</name>
<name sortKey="Stroher, Elke" sort="Stroher, Elke" uniqKey="Stroher E" first="Elke" last="Ströher">Elke Ströher</name>
<name sortKey="Whelan, James" sort="Whelan, James" uniqKey="Whelan J" first="James" last="Whelan">James Whelan</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Millar, A Harvey" sort="Millar, A Harvey" uniqKey="Millar A" first="A Harvey" last="Millar">A Harvey Millar</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000455 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000455 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26672074
   |texte=   Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26672074" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020